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Abstract

Discriminative learning methods for classification penfiaxell when training and
test data are drawn from the same distribution. In many tiitlas, though, we
have labeled training data forsmurcedomain, and we wish to learn a classifier
which performs well on gargetdomain with a different distribution. Under what
conditions can we adapt a classifier trained on the sourceiofor use in the
target domain? Intuitively, a good feature representdatiancrucial factor in the
success of domain adaptation. We formalize this intuittoeotetically with a
generalization bound for domain adaption. Our theoryfitates the tradeoffs in-
herent in designing a representation for domain adaptatidrgives a new justifi-
cation for a recently proposed model. It also points towgrtbanising new model
for domain adaptation: one which explicitly minimizes thi#atence between the
source and target domains, while at the same time maximibmgnargin of the
training set.

1 Introduction

We are all familiar with the situation in which someone lestmperform a task on training examples
drawn from some domain (ttevurcedomain), but then needs to perform the same task on a related
domain (thearget domain. In this situation, we expect the task performance in thgetedomain to
depend on both the performance in the source domain andfiarsy between the two domains.

This situation arises often in machine learning. For examwle might want to adapt for a new

user (the target domain) a spam filter trained on the emailgsbap of previous users (the source
domain), under the assumption that users generally agrefatis spam and what is not. Then, the
challenge is that the distributions of emails for the firstdaisers and for the new user are different.
Intuitively, one might expect that the closer the two dizitions are, the better the filter trained on
the source domain will do on the target domain.

Many other instances of this situation arise in natural leagg processing. In general, labeled data
for tasks like part-of-speech tagging, parsing, or infaioreextraction are drawn from a limited set
of document types and genres in a given language becausaitzlalty, cost, and project goals.
However, applications for the trained systems often ineddemewhat different document types
and genres. Nevertheless, part-of-speech, syntactictstey or entity mention decisions are to a
large extent stable across different types and genres giegalepend on general properties of the
language under consideration.

Discriminative learning methods for classification aredubsn the assumption that training and test
data are drawn from the same distribution. This assumptimieties both theoretical estimates of
generalization error and the many experimental evaluatidearning methods. However, the as-
sumption does not hold for domain adaptation [5, 7, 13, 6} tlk@situations we outlined above, the
challenge is the difference in instance distribution betmvihe source and target domains. We will
approach this challenge by investigating how a common sgpitation between the two domains



can make the two domains appear to have similar distribsitienabling effective domain adapta-
tion. We formalize this intuition with a bound on tkergetgeneralization error of a classifier trained
from labeled data in theourcedomain. The bound is stated in terms of a representatiortibumc
and it shows that a representation function should be dedigmminimize domain divergence, as
well as classifier error.

While many authors have analyzed adaptation from multipte ef labeled training data [3, 5, 7,
13], our theory applies to the setting in which the target dionihas no labeled training data, but
plentiful unlabeled data exists for both target and soummains. As we suggested above, this
setting realistically captures the problems widely en¢ered in real-world applications of machine
learning. Indeed recent empirical work in natural languaigeessing [11, 6] has been targeted at
exactly this setting.

We show experimentally that the heuristic choices made byehently proposed structural corre-
spondence learning algorithm [6] do lead to lower valuesiefrelevant quantities in our theoretical
analysis, providing insight as to why this algorithm acleieits empirical success. Our theory also
points to an interesting new algorithm for domain adaptatane which directly minimizes a trade-
off between source-target similarity and source trainimgre

The remainder of this paper is structured as follows: In e Bection we formally define domain
adaptation. Section 3 gives our main theoretical resulte. d®¥cuss how to compute the bound
in section 4. Section 5 shows how the bound behaves for thetstal correspondence learning
representation [6] on natural language data. We discusiralings, including a new algorithm for
domain adaptation based on our theory, in section 6 and edadh section 7.

2 Background and Problem Setup

Let X be an instance set. In the case of [6], this could be all Emglisrds, together with the
possible contexts in which they occur. LEtbe a feature spac®( is a typical choice) and0, 1}
be the label set for binary classificatfon

A learning problem is specified by two parameters: a distiglnD overX and a (stochastic) target
function f : X — [0,1]. The value off(x) corresponds to the probability that the labekofs
1. A representation functio® is a function which maps instances to featufes X — Z. A
representatiofk induces a distribution oveZ and a (stochastic) target function franto [0, 1] as
follows:

Prs(B] ¥ Prp[RY(B)]

fz) = Ep[f(x)R(x) =12
forany A C Z such thatR ~!(B) is D-measurable. In words, the probability of an evBntinder
D is the probability of the inverse image funderR according taD, and the probability that the
label ofz is 1 according tof is the mean of probabilities of instancesthatz represents. Note
that f(z) may be a stochastic function evenfifx) is not. This is because the functihcan map
two instances with differenft-labels to the same feature representation. In summaryeatming
setting is defined by fixed but unknovinand f, and our choice of representation functiRnand
hypothesis class{ C {g: Z — {0,1}} of deterministic hypotheses to be used to approximate the
function f.

2.1 Domain Adaptation

We now formalize the problem afomain adaptationA domainis a distributionD on the instance
setX. Note that this isrot the domain of a function. To avoid confusion, we will alwaysan a
specific distribution over the instance set when we say doenmailike in inductive transfer, where
the tasks we wish to perform may be related but differentpimain adaptation we perform tsame
task in multiple domains. This is quite common in naturablaage processing, where we might be
performing the same syntactic analysis task, such as tgggiparsing, but on domains with very
different vocabularies [6, 11].

1The same type of analysis hold for multiclass classificatiom for simplicty we analyze the binary case.



We assume two domains,smurcedomain and aarget domain. We denote b the source
distribution of instances anBlg the induced distribution over the feature spaceWe use parallel
notation, Dy, Dr, for the target domain.f : X — [0,1] is the labeling rule, common to both
domains, and is the induced image of underR.

A predictor is a function, from the feature spac&; to [0, 1]. We denote the probability, according
the distributionDg, that a predictoh disagrees withyf by

es(h) = E, p, [Ey~f(Z) ly # h(z)]}

s |F(2) = h(z)|
Similarly, er(h) denotes the expected erroriofvith respect tdD;-.

= E

3 Generalization Bounds for Domain Adaptation

We now proceed to develop a bound on the target domain geratiah performance of a classifier
trained in the source domain. As we alluded to in sectionélbtiund consists of two terms. The first
term bounds the performance of the classifier orstiiercedomain. The second term is a measure
of the divergence between the induced source mar@gadnd the induced target margiraf-. A
natural measure of divergence for distributions isther variational distance. This is defined as

dr,(D,D') = 2 sup |Prp [B] — Prp/ [B]
BeB

whereB is the set of measureable subsets uridemdD’. Unfortunately the variational distance
between real-valued distributions cannot be computed fioite samples [2, 9] and therefore is not
useful to us when investigating representations for doradaptation on real-world data.

A key part of our theory is the observation that in many réialidomain adaptation scenarios, we
do not need such a powerful measure as variational distdnstead we can restrict our notion of
domain distance to be measured only with respect to funationr hypothesis class.

3.1 TheA-distance and labeling function complexity

We make use of a special measure of distance between prippdtstributions, thed-distance, as
introduced in [9]. Given a domai’ and a collectionA of subsets ofY, let D, D’ be probability
distributions overt’, such that every set il is measurable with respect to both distributions. the
A-distance between such distributions is defined as

da(D, D) = 2 sup [Prp [4] — Prpy [4]
AeA

In order to use thed-distance, we need to limit the complexity of the true fuaetf in terms of
our hypothesis clasK. We say~that a functioff : Z — [0, 1] is A-close to a function clask with
respect to distribution®g andDr if

inf <.

jnf [es(h) +er(h)] < A
A function f is A-close to{ when there is a single hypothesiss H which performs well orboth
domains. This embodies our domain adaptation assumptiehwa will assume will assume that
our induced labeling functiolfi is A-close to our hypothesis clagsfor a small).

We briefly note that in standard learning theory, it is pdssib achieve bounds with no explicit as-
sumption on labeling function complexity. H has bounded capacity (e.g., a finite VC-dimension),
then uniform convergence theory tells us that whengusmot\-close toH, large training samples
have poor empirical error for evefye H. This isnotthe case for domain adaptation. If the training
data is generated by soni; and we wish to use sonté as a family of predictors for labels in the
target domainy’, then one can construct a function which agrees with shrae’™ with respect

to Ds and yet is far frontH with respect tdDy. Nonetheless we believe that such examples do
not occur for realistic domain adaptation problems wherhypmothesis clas# is sufficiently rich,
since for most domain adaptation problems of interest thelilag function is 'similarly simple’ for
both the source and target domains.



3.2 Bound on the target domain error

We require one last piece of notation before we state andeghm/main theorems of this work: the
correspondence between functions and characteristiesulb%r a binary-valued functiagiiz), we
let Z, C Z be the subset whose characteristic function is

Z,={z¢€Z:9(z) =1} .

In a slight abuse of notation, for a binary function cl&gsve will write d (-, -) to indicate the
A-distance on the class of subsets whose characteristitidnsare functions iri{. Now we can
state our main theoretical result.

Theorem 1 Let R be a fixed representation function frokhto Z andH be a hypothesis space of
VC-dimensioni. If a random labeled sample of size is generated by applying R toRg-i.i.d.
sample labeled according tp, then with probability at least — ¢, for everyh € H:

4 2 4 o
er(h) < és(h) + \/E (dlog% +log 5) + dy(Ds, Dr) + A

wheree is the base of the natural logarithm.

Proof: Leth* = argmin, .y (er(h) + es(h)), and let\y and g be the errors ok* with respect
to D7 andDg respectively. Notice that = Ay + Ag.

er(h) Ar + Prp, [Z,AZ)]

A1 + Prp, [ZhAZp] + |Prpg [ZnAZp+] — Prp,. [ZRAZR+]
A + Prpg [2,AZ)-] + dn(Ds, Dr)

A1 + As + es(h) + dy (Ds, D)

A+ es(h) + dy(Ds, Dr)

The theorem now follows by a standard application Vapnilei®@bnenkis theory [14] to bound the
true es(h) by its empirical estimatés(h). Namely, if S is anm-size .i.i.d. sample, then with
probability exceeding — 9,

. 4 2em 4
es(h) < és(h) + \/E (dlog 7 + log E)

W The bound depends on the quantity(Dg, Dr). We chose thel-distance, however, precisely
because we can measure this from finite samples from théuligtnsD g andD [9]. Combining
1 with theorem 3.2 from [9], we can state a computable bounthierror on the target domain.

IAN AN IA AN IA

Theorem 2 LetR be a fixed representation function froihto Z and’H be a hypothesis space of
VC-dimensionl.

If a random labeled sample of size is generated by applying to a D - i.i.d. sample labeled
according tof, andis, Uy are unlabeled samples of siz€ each, drawn fronDs andD respec-
tively, then with probability at least — § (over the choice of the samples), for everyg H:

dlog(2m’) + log(3)
m/

4 2 1 o
er(h) < és(h) + E\/(dlog% + log 5) A+ d(Us, Ur) + 4\/

Let us briefly examine the bound from theorem 2, with an eyetdweature representatiors,
Under the assumption of subsection 3.1, we assume\tisasmall for reasonabl®. Thus the two
main terms of interest are the first and fourth terms, sineegpresentatioR directly affects them.
The first term is the empirical training error. The fourthnteis the sampled-distance between
domains for hypothesis clags. Looking at the two terms, we see that a good represent&im
one which achieves low values for both training error and diom-distance simultaneously.



4 Computing the A-distance for Signed Linear Classifiers

In this section we discuss practical considerations in aging the.4-distance on real data. Ben-
David et al. [9] show that thel-distance can be approximated arbitrarily well with incieg sample
size. Recalling the relationship between sets and themackeristic functions, it should be clear that
computing theA-distance is closely related to learning a classifier. Ini faey are identical. The
set A, € H which maximizes thé+{-distance betwees and Dy has a characteristic function
h. Thenh is the classifier which achieves minimum error on the bindagsification problem of
discriminating between points generated by the two distidins.

To see this, suppose we have two sampleandl/; , each of sizen’ from Dg andDy respectively.
Define the error of a classifiéron the task of discriminating between points sampled frdfemdint
distributions as

1

2m’

2m’
err(h) = =— > |h(z) = I, 7.
i=1
wherel, . is the indicator function for points lying in the sample. In this case, it is straight-
forward to show that

dA(L?S,L?T) =2 (1 — 2 min err(h’)) )
h'eH

Unfortunately it is a known NP-hard problem even to appratierthe error of the optimal hyper-
plane classifier for arbitrary distributions [4]. We chodseapproximate the optimal hyperplane
classifier by minimizing a convex upper bound on the errolisagandard in classification. It is
important to note that this do@st provide us with a valid upper bound on the target error, buteas
will see it nonetheless provides us with useful insightsubepresentations for domain adaptation.
In the subsequent experiments section, we train a lineasifiler to discriminate between points
sampled from different domains to illustrate a proxy for thealistance. We minimize a modified
Huber loss using stochastic gradient descent, describeel completely in [15].

5 Natural Language Experiments

In this section we use our theory to analyze different regmdtions for the task of adapting a part of
speech tagger from the financial to biomedical domains [BE @xperiments illustrate the utility of
the bound and all of them have the same flavor. First, we ch@ospresentatio®. Then we train

a classifier usin@Rk and measure the different terms of the bound. As we shallrepegsenations
which minimize both relevant terms of the bound also havdlsenapirical error.

Part of speech (PoS) tagging is the task of labeling a wordiiiext with its grammatical function.

For instance, in the previous sentence we would the tag fmee'sh” issingular common noyn

the tag for “labeling” isgerund and so on. PoS tagging is a common preprocessing step in many
pipelined natural language processing systems and isideddn more detail in [6]. Blitzer et al.
empirically investigate methods for adpating a part of shadagger from financial news (the Wall
Street Journal, henceforth also WSJ) to biomedical alist(EDLINE) [6]. We have obtained
their data, and we will use it throughout this section. Adieit investigation, we treat the financial
data as our source, for which we have labeled training datéebiomedical abstracts as our target,
for which we have no labeled training data.

The representations we consider in this section are altipeojections of the original feature space
into R?. For PoS tagging, the original feature space consists df-timensional, sparse binary
vectors [6]. In all of our experiments we choogdo be 200. Now at train time we apply the
projection to the binary feature vector representatiorachanstance and learn a linear classifier in
thed-dimensional projected space. At test time we apply thesgtan to the binary feature vector
representation and classify in tHedimensional projected space.

5.1 Random Projections

If our original feature space is of dimensidh our random projection matrix is a mattix € R2x?".
The entries ofP are drawn i.i.d. from\/(0,1). The Johnson-Lindenstrauss lemma [8] guarantees



(a) Plot of SCL representation for financial(b) Plot of SCL representation for nouns (di-
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Figure 1: 2D plots of SCL representations for i@ .4-distance andb) empirical risk parts of
theorem 2

that random projections approximate well distances in tigir@l high dimensional space, as long
asd is sufficiently large. Arriaga and Vempala [1] show that oae achieve good prediction with
random projections as long as the margin is sufficientlydarg

5.2 Structural Correspondence Learning

Blitzer et al. [6] describe a heuristic method for domaindton that they call structural corre-
spondence learning (henceforth also SCL). SCL uses uidluta from both domains to induce
correspondences among features in the two domains. ltstBsts to identify a small set of domain-
independent “pivot” features which occur frequently in thdabeled data of both domains. Other
features are then represented using their relative cormauoee counts with these pivot features. Fi-
nally they use a low-rank approximation to the co-occurermet matrix as a projection matrix.
The intuition is that by capturing these important corielas, features from the source and target
domains which behave similarly for PoS tagging will be reserged similarly in the projected space.

5.3 Results

We use as ousourcedata set 100 sentences (about 2500 words) of PoS-tagged®inédt Journal
text. Thetargetdomain test set is the same set as in [6]. We use one milliodsy&00 thousand
from each domain) of unlabeled data to estimatedhdistance between the financial and biomedi-
cal domains.

The results in this section are intended to illustrate tiffeidint parts of theorem 2 and how they can
affect the target domain generalization error. We give ype$ of results. The first are pictorial and
appear in figures 1(a), 1(b) and 2(a). These are intendellistréte either thed-distance (figures
1(a) and 2(a)) or the empirical error (figure 1(b)) for diéfat representations. The second type
are empirical and appear in 2(b). In this case we use the Habgias a proxy from the empirical
training error.

Figure 1(a) shows one hundred random instances projectedlmspace spanned by the best two
discriminating projections from the SCL projection matiix part of the financial and biomedical
dataset. Instances from the WSJ are depicted as filled redesjwhereas those from MEDLINE
are depicted as empty blue circles. An approximating lirdiserimnator is also shown. Note,
however, that the discriminator performs poorly, and rettelt if the best discriminator performs
poorly the A-distance is low. On the other hand, figure 1(b) shows the teestdiscriminating
components for the task of discriminating between nounsvanigs. Note that in this case, a good
discriminating divider is easy to find, even in such a low-eiteional space. Thus these pictures
lead us to believe that SCL finds a representation whichtseath in small empirical classification
error and smalld-distance. In this case theorem 2 predicts good performance



(a) Plot of random projections repre-(b) Comparison of bound terms vs.target domain error
sentation for financial (squares) vsfor different choices of representatidReprentations
biomedical (circles) are linear projections of the original feature spdde-
=, o = =& —————  perlossis thelabeledtraining loss after training, and
the A-distance is approximated as described in the
previous subsectiorError refers to tagging error for
the full tagset on the target domain.

Representation| Huber loss| A-distance|| Error
Identity | 0.003 1.796 0.253
Random Proj| 0.254 0.223 0.561
SCL | 0.07 0.211 0.216

Figure 2:(a) 2D plot of random projection representation ghiiresults summary on large data

Figure 2(a) shows one hundred random instances projectedtoa best two discriminating pro-
jections for WSJ vs. MEDLINE from a random matrix of 200 pi@jens. This also seems to be
difficult to separate. The random projections don't revesl aseful structure for learning, either,
though. Not shown is the corresponding noun vs. verb platdiodom projections. It looks identical
to 2(a). Thus theorem 2 predicts that using two random ptiojes as a representation will perform
poorly, since it minimizes only thel-distance and not the empirical error.

Figure 2(b) gives results on a large training and test sewistgphow the value of the bound can
affect results. The identity representation achieves immHuber loss (corresponding to empirical
error). The original feature set consists of 3 million binaalued features, though, and it is quite
easy to separate the two domains using these features. Phexapate.A-distance is near the
maximum possible value.

The random projections method achieves ldxdistance but high Huber loss, and the classifier
which uses this representation achieves error rates mugadr ktnan the a classifier which uses the

identity representation. Finally, the structural cor@spence learning representation achieves low
Huber loss and lowd-distance, and the error rate is the lowest of the three septations.

6 Discussion and Future Work

Our theory demonstrates an important tradeoff inherenesighing good representations for do-
main adaptation. A good representation enables achiemimgiror rate on the source domain while
also minimizing the4-distance between the induced marginal distributions@fwo domains. The
previous section demonstrates empirically that the héciighoices of the SCL algorithm [6] do
achieve low values for each of these terms.

Our theory is closely related to theory by Sugiyama and Muealh covariate shift in regression
models [12]. Like this work, they consider the case wherepttegliction functions are identical,
but the input data (covariates) have different distritngioUnlike their work, though, we bound the
target domain error using a finite source domain labeled kaamal finite source and target domain
unlabeled samples.

Our experiments illustrate the utility of our bound on targemain error, but they do not explore
the accuracy of our approximaté-distance. This is an important area of exploration for ffeitu
work. Finally our theory points toward an interesting newedtion for domain adapation. Rather
than heuristically choosing a representation, as previessarch has done [6], we can try to learn
a representation which directly minimizes a combinationthef terms in theorem 2. If we learn
mappings from some parametric family (linear projectidns,example), we can give a bound on
the error in terms of the complexity of this family. This may better than the current heuristics,
and we are also investigating theory and algorithms for this



7 Conclusions

We presented an analysis of representations for domairtaéap It is reasonable to think that a
good representation is the key to effective domain adaptaéind our theory backs up that intuition.
Theorem 2 gives an upper bound on the generalization of sifitagrained on @ourcedomain and
applied in aargetdomain. The bound depends on the representation and éyadiemonstrates the
tradeoff between low empirical source domain error and dlstifeerence between distributions.

Under the assumption that the labeling functfais close to our hypothesis claks we can compute
the bound from finite samples. The relevant distributiomatidience term can be written as tde
distance of Kiferet al [9]. Computing theA-distance is equivalent to finding the minimum-error
classifier. For hyperplane classifiersid, this is an NP-hard problem, but we give experimental
evidence that minimizing a convex upper bound on the ersoin aormal classification, can give a
reasonable approximation to thedistance.

Our experiments indicate that the heuristic structurategspondence learning method [6] does in
fact simultaneously achieve low-distance as well as a low margin-based loss. This provides a
justification for the heuristic choices of SCL “pivots”. Hilly we note that our theory points to
an interesting new algorithm for domain adaptation. Indtefamaking heuristic choices, we are
investigating algorithms which directly minimize a comdiion of theA-distance and the empirical
training margin.
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