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Abstract

Discriminative learning methods for classification perform well when training and
test data are drawn from the same distribution. In many situations, though, we
have labeled training data for asourcedomain, and we wish to learn a classifier
which performs well on atargetdomain with a different distribution. Under what
conditions can we adapt a classifier trained on the source domain for use in the
target domain? Intuitively, a good feature representationis a crucial factor in the
success of domain adaptation. We formalize this intuition theoretically with a
generalization bound for domain adaption. Our theory illustrates the tradeoffs in-
herent in designing a representation for domain adaptationand gives a new justifi-
cation for a recently proposed model. It also points toward apromising new model
for domain adaptation: one which explicitly minimizes the difference between the
source and target domains, while at the same time maximizingthe margin of the
training set.

1 Introduction

We are all familiar with the situation in which someone learns to perform a task on training examples
drawn from some domain (thesourcedomain), but then needs to perform the same task on a related
domain (thetarget domain). In this situation, we expect the task performance in the target domain to
depend on both the performance in the source domain and the similarity between the two domains.

This situation arises often in machine learning. For example, we might want to adapt for a new
user (the target domain) a spam filter trained on the email of agroup of previous users (the source
domain), under the assumption that users generally agree onwhat is spam and what is not. Then, the
challenge is that the distributions of emails for the first set of users and for the new user are different.
Intuitively, one might expect that the closer the two distributions are, the better the filter trained on
the source domain will do on the target domain.

Many other instances of this situation arise in natural language processing. In general, labeled data
for tasks like part-of-speech tagging, parsing, or information extraction are drawn from a limited set
of document types and genres in a given language because of availability, cost, and project goals.
However, applications for the trained systems often involve somewhat different document types
and genres. Nevertheless, part-of-speech, syntactic structure, or entity mention decisions are to a
large extent stable across different types and genres sincethey depend on general properties of the
language under consideration.

Discriminative learning methods for classification are based on the assumption that training and test
data are drawn from the same distribution. This assumption underlies both theoretical estimates of
generalization error and the many experimental evaluations of learning methods. However, the as-
sumption does not hold for domain adaptation [5, 7, 13, 6]. For the situations we outlined above, the
challenge is the difference in instance distribution between the source and target domains. We will
approach this challenge by investigating how a common representation between the two domains



can make the two domains appear to have similar distributions, enabling effective domain adapta-
tion. We formalize this intuition with a bound on thetargetgeneralization error of a classifier trained
from labeled data in thesourcedomain. The bound is stated in terms of a representation function,
and it shows that a representation function should be designed to minimize domain divergence, as
well as classifier error.

While many authors have analyzed adaptation from multiple sets of labeled training data [3, 5, 7,
13], our theory applies to the setting in which the target domain has no labeled training data, but
plentiful unlabeled data exists for both target and source domains. As we suggested above, this
setting realistically captures the problems widely encountered in real-world applications of machine
learning. Indeed recent empirical work in natural languageprocessing [11, 6] has been targeted at
exactly this setting.

We show experimentally that the heuristic choices made by the recently proposed structural corre-
spondence learning algorithm [6] do lead to lower values of the relevant quantities in our theoretical
analysis, providing insight as to why this algorithm achieves its empirical success. Our theory also
points to an interesting new algorithm for domain adaptation: one which directly minimizes a trade-
off between source-target similarity and source training error.

The remainder of this paper is structured as follows: In the next section we formally define domain
adaptation. Section 3 gives our main theoretical results. We discuss how to compute the bound
in section 4. Section 5 shows how the bound behaves for the structural correspondence learning
representation [6] on natural language data. We discuss ourfindings, including a new algorithm for
domain adaptation based on our theory, in section 6 and conclude in section 7.

2 Background and Problem Setup

Let X be an instance set. In the case of [6], this could be all English words, together with the
possible contexts in which they occur. LetZ be a feature space (R

d is a typical choice) and{0, 1}
be the label set for binary classification1.

A learning problem is specified by two parameters: a distributionD overX and a (stochastic) target
functionf : X → [0, 1]. The value off(x) corresponds to the probability that the label ofx is
1. A representation functionR is a function which maps instances to featuresR : X → Z. A
representationR induces a distribution overZ and a (stochastic) target function fromZ to [0, 1] as
follows:

Pr
D̃

[B]
def
= PrD

[

R−1(B)
]

f̃(z)
def
= ED [f(x)|R(x) = z]

for anyA ⊆ Z such thatR−1(B) is D-measurable. In words, the probability of an eventB under
D̃ is the probability of the inverse image ofB underR according toD, and the probability that the
label of z is 1 according tof̃ is the mean of probabilities of instancesx that z represents. Note
that f̃(z) may be a stochastic function even iff(x) is not. This is because the functionR can map
two instances with differentf -labels to the same feature representation. In summary, ourlearning
setting is defined by fixed but unknownD andf , and our choice of representation functionR and
hypothesis classH ⊆ {g : Z → {0, 1}} of deterministic hypotheses to be used to approximate the
functionf .

2.1 Domain Adaptation

We now formalize the problem ofdomain adaptation. A domainis a distributionD on the instance
setX . Note that this isnot the domain of a function. To avoid confusion, we will always mean a
specific distribution over the instance set when we say domain. Unlike in inductive transfer, where
the tasks we wish to perform may be related but different, in domain adaptation we perform thesame
task in multiple domains. This is quite common in natural language processing, where we might be
performing the same syntactic analysis task, such as tagging or parsing, but on domains with very
different vocabularies [6, 11].

1The same type of analysis hold for multiclass classification, but for simplicty we analyze the binary case.



We assume two domains, asourcedomain and atarget domain. We denote byDS the source
distribution of instances and̃DS the induced distribution over the feature spaceZ. We use parallel
notation,DT , D̃T , for the target domain.f : X → [0, 1] is the labeling rule, common to both
domains, and̃f is the induced image off underR.

A predictor is a function,h, from the feature space,Z to [0, 1]. We denote the probability, according
the distributionDS , that a predictorh disagrees withf by

ǫS(h) = E
z∼D̃S

[

Ey∼f̃(z) [y 6= h(z)]
]

= E
z∼D̃S

∣

∣

∣
f̃(z) − h(z)

∣

∣

∣
.

Similarly, ǫT (h) denotes the expected error ofh with respect toDT .

3 Generalization Bounds for Domain Adaptation

We now proceed to develop a bound on the target domain generalization performance of a classifier
trained in the source domain. As we alluded to in section 1, the bound consists of two terms. The first
term bounds the performance of the classifier on thesourcedomain. The second term is a measure
of the divergence between the induced source marginalD̃S and the induced target marginalD̃T . A
natural measure of divergence for distributions is theL1 or variational distance. This is defined as

dL1
(D,D′) = 2 sup

B∈B

|PrD [B] − PrD′ [B]|

whereB is the set of measureable subsets underD andD′. Unfortunately the variational distance
between real-valued distributions cannot be computed fromfinite samples [2, 9] and therefore is not
useful to us when investigating representations for domainadaptation on real-world data.

A key part of our theory is the observation that in many realistic domain adaptation scenarios, we
do not need such a powerful measure as variational distance.Instead we can restrict our notion of
domain distance to be measured only with respect to functionin our hypothesis class.

3.1 TheA-distance and labeling function complexity

We make use of a special measure of distance between probability distributions, theA-distance, as
introduced in [9]. Given a domainX and a collectionA of subsets ofX , let D, D′ be probability
distributions overX , such that every set inA is measurable with respect to both distributions. the
A-distance between such distributions is defined as

dA(D,D′) = 2 sup
A∈A

|PrD [A] − PrD′ [A]|

In order to use theA-distance, we need to limit the complexity of the true function f in terms of
our hypothesis classH. We say that a functioñf : Z → [0, 1] is λ-close to a function classH with
respect to distributions̃DS andD̃T if

inf
h∈H

[ǫS(h) + ǫT (h)] ≤ λ .

A function f̃ is λ-close toH when there is a single hypothesish ∈ H which performs well onboth
domains. This embodies our domain adaptation assumption, and we will assume will assume that
our induced labeling functioñf is λ-close to our hypothesis classH for a smallλ.

We briefly note that in standard learning theory, it is possible to achieve bounds with no explicit as-
sumption on labeling function complexity. IfH has bounded capacity (e.g., a finite VC-dimension),
then uniform convergence theory tells us that wheneverf̃ is notλ-close toH, large training samples
have poor empirical error for everyh ∈ H . This isnot the case for domain adaptation. If the training
data is generated by someDS and we wish to use someH as a family of predictors for labels in the
target domain,T , then one can construct a function which agrees with someh ∈ H with respect
to D̃S and yet is far fromH with respect toD̃T . Nonetheless we believe that such examples do
not occur for realistic domain adaptation problems when thehypothesis classH is sufficiently rich,
since for most domain adaptation problems of interest the labeling function is ’similarly simple’ for
both the source and target domains.



3.2 Bound on the target domain error

We require one last piece of notation before we state and prove the main theorems of this work: the
correspondence between functions and characteristic subsets. For a binary-valued functiong(z), we
let Zg ⊆ Z be the subset whose characteristic function isg

Zg = {z ∈ Z : g(z) = 1} .

In a slight abuse of notation, for a binary function classH we will write dH(·, ·) to indicate the
A-distance on the class of subsets whose characteristic functions are functions inH. Now we can
state our main theoretical result.

Theorem 1 LetR be a fixed representation function fromX to Z andH be a hypothesis space of
VC-dimensiond. If a random labeled sample of sizem is generated by applying R to aDS-i.i.d.
sample labeled according tof , then with probability at least1 − δ, for everyh ∈ H:

ǫT (h) ≤ ǫ̂S(h) +

√

4

m

(

d log
2em

d
+ log

4

δ

)

+ dH(D̃S , D̃T ) + λ

wheree is the base of the natural logarithm.

Proof: Let h∗ = argminh∈H (ǫT (h) + ǫS(h)), and letλT andλS be the errors ofh∗ with respect
toDT andDS respectively. Notice thatλ = λT + λS .

ǫT (h) ≤ λT + PrDT
[Zh∆Zh∗ ]

≤ λT + PrDS
[Zh∆Zh∗ ] + |PrDS

[Zh∆Zh∗ ] − PrDT
[Zh∆Zh∗ ]|

≤ λT + PrDS
[Zh∆Zh∗ ] + dH(D̃S , D̃T )

≤ λT + λS + ǫS(h) + dH(D̃S , D̃T )

≤ λ + ǫS(h) + dH(D̃S , D̃T )

The theorem now follows by a standard application Vapnik-Chervonenkis theory [14] to bound the
true ǫS(h) by its empirical estimatêǫS(h). Namely, if S is anm-size .i.i.d. sample, then with
probability exceeding1 − δ,

ǫS(h) ≤ ǫ̂S(h) +

√

4

m

(

d log
2em

d
+ log

4

δ

)

The bound depends on the quantitydH(D̃S , D̃T ). We chose theA-distance, however, precisely
because we can measure this from finite samples from the distrbutionsD̃S andD̃T [9]. Combining
1 with theorem 3.2 from [9], we can state a computable bound for the error on the target domain.

Theorem 2 LetR be a fixed representation function fromX to Z andH be a hypothesis space of
VC-dimensiond.

If a random labeled sample of sizem is generated by applyingR to a DS - i.i.d. sample labeled
according tof , andŨS , ŨT are unlabeled samples of sizem′ each, drawn fromD̃S andD̃T respec-
tively, then with probability at least1 − δ (over the choice of the samples), for everyh ∈ H:

ǫT (h) ≤ ǫ̂S(h) +
4

m

√

(

d log
2em

d
+ log

4

δ

)

+ λ + dH(ŨS , ŨT ) + 4

√

d log(2m′) + log(4
δ
)

m′

Let us briefly examine the bound from theorem 2, with an eye toward feature representations,R.
Under the assumption of subsection 3.1, we assume thatλ is small for reasonableR. Thus the two
main terms of interest are the first and fourth terms, since the representationR directly affects them.
The first term is the empirical training error. The fourth term is the sampleA-distance between
domains for hypothesis classH. Looking at the two terms, we see that a good representationR is
one which achieves low values for both training error and domainA-distance simultaneously.



4 Computing theA-distance for Signed Linear Classifiers

In this section we discuss practical considerations in computing theA-distance on real data. Ben-
David et al. [9] show that theA-distance can be approximated arbitrarily well with increasing sample
size. Recalling the relationship between sets and their characteristic functions, it should be clear that
computing theA-distance is closely related to learning a classifier. In fact they are identical. The
setAh ∈ H which maximizes theH-distance betweeñDS and D̃T has a characteristic function
h. Thenh is the classifier which achieves minimum error on the binary classification problem of
discriminating between points generated by the two distributions.

To see this, suppose we have two samplesŨS andŨT , each of sizem′ from D̃S andD̃T respectively.
Define the error of a classifierh on the task of discriminating between points sampled from different
distributions as

err(h) =
1

2m′

2m′

∑

i=1

∣

∣h(zi) − I
zi∈ŨS

∣

∣ ,

whereI
zi∈ŨS

is the indicator function for points lying in the samplẽUS . In this case, it is straight-
forward to show that

dA(ŨS , ŨT ) = 2

(

1 − 2 min
h′∈H

err(h′)

)

.

Unfortunately it is a known NP-hard problem even to approximate the error of the optimal hyper-
plane classifier for arbitrary distributions [4]. We chooseto approximate the optimal hyperplane
classifier by minimizing a convex upper bound on the error, asis standard in classification. It is
important to note that this doesnotprovide us with a valid upper bound on the target error, but aswe
will see it nonetheless provides us with useful insights about representations for domain adaptation.
In the subsequent experiments section, we train a linear classifier to discriminate between points
sampled from different domains to illustrate a proxy for theA-distance. We minimize a modified
Huber loss using stochastic gradient descent, described more completely in [15].

5 Natural Language Experiments

In this section we use our theory to analyze different representations for the task of adapting a part of
speech tagger from the financial to biomedical domains [6]. The experiments illustrate the utility of
the bound and all of them have the same flavor. First, we choosea representationR. Then we train
a classifier usingR and measure the different terms of the bound. As we shall see,represenations
which minimize both relevant terms of the bound also have small empirical error.

Part of speech (PoS) tagging is the task of labeling a word in context with its grammatical function.
For instance, in the previous sentence we would the tag for “speech” issingular common noun,
the tag for “labeling” isgerund, and so on. PoS tagging is a common preprocessing step in many
pipelined natural language processing systems and is described in more detail in [6]. Blitzer et al.
empirically investigate methods for adpating a part of speech tagger from financial news (the Wall
Street Journal, henceforth also WSJ) to biomedical abstracts (MEDLINE) [6]. We have obtained
their data, and we will use it throughout this section. As in their investigation, we treat the financial
data as our source, for which we have labeled training data and the biomedical abstracts as our target,
for which we have no labeled training data.

The representations we consider in this section are all linear projections of the original feature space
into R

d. For PoS tagging, the original feature space consists of high-dimensional, sparse binary
vectors [6]. In all of our experiments we choosed to be 200. Now at train time we apply the
projection to the binary feature vector representation of each instance and learn a linear classifier in
thed-dimensional projected space. At test time we apply the projection to the binary feature vector
representation and classify in thed-dimensional projected space.

5.1 Random Projections

If our original feature space is of dimensiond′, our random projection matrix is a matrixP ∈ R
d×d′

.
The entries ofP are drawn i.i.d. fromN (0, 1). The Johnson-Lindenstrauss lemma [8] guarantees



(a) Plot of SCL representation for financial
(squares) vs. biomedical (circles)

(b) Plot of SCL representation for nouns (di-
amonds) vs. verbs (triangles)

Figure 1: 2D plots of SCL representations for the(a) A-distance and(b) empirical risk parts of
theorem 2

that random projections approximate well distances in the original high dimensional space, as long
asd is sufficiently large. Arriaga and Vempala [1] show that one can achieve good prediction with
random projections as long as the margin is sufficiently large.

5.2 Structural Correspondence Learning

Blitzer et al. [6] describe a heuristic method for domain adaptation that they call structural corre-
spondence learning (henceforth also SCL). SCL uses unlabeled data from both domains to induce
correspondences among features in the two domains. Its firststep is to identify a small set of domain-
independent “pivot” features which occur frequently in theunlabeled data of both domains. Other
features are then represented using their relative co-occurrence counts with these pivot features. Fi-
nally they use a low-rank approximation to the co-occurencecount matrix as a projection matrixP .
The intuition is that by capturing these important correlations, features from the source and target
domains which behave similarly for PoS tagging will be represented similarly in the projected space.

5.3 Results

We use as oursourcedata set 100 sentences (about 2500 words) of PoS-tagged WallStreet Journal
text. Thetargetdomain test set is the same set as in [6]. We use one million words (500 thousand
from each domain) of unlabeled data to estimate theA-distance between the financial and biomedi-
cal domains.

The results in this section are intended to illustrate the different parts of theorem 2 and how they can
affect the target domain generalization error. We give two types of results. The first are pictorial and
appear in figures 1(a), 1(b) and 2(a). These are intended to illustrate either theA-distance (figures
1(a) and 2(a)) or the empirical error (figure 1(b)) for different representations. The second type
are empirical and appear in 2(b). In this case we use the Huberloss as a proxy from the empirical
training error.

Figure 1(a) shows one hundred random instances projected onto the space spanned by the best two
discriminating projections from the SCL projection matrixfor part of the financial and biomedical
dataset. Instances from the WSJ are depicted as filled red squares, whereas those from MEDLINE
are depicted as empty blue circles. An approximating lineardiscrimnator is also shown. Note,
however, that the discriminator performs poorly, and recall that if the best discriminator performs
poorly theA-distance is low. On the other hand, figure 1(b) shows the besttwo discriminating
components for the task of discriminating between nouns andverbs. Note that in this case, a good
discriminating divider is easy to find, even in such a low-dimensional space. Thus these pictures
lead us to believe that SCL finds a representation which results both in small empirical classification
error and smallA-distance. In this case theorem 2 predicts good performance.



(a)Plot of random projections repre-
sentation for financial (squares) vs.
biomedical (circles)

(b) Comparison of bound terms vs.target domain error
for different choices of representation.Reprentations
are linear projections of the original feature space.Hu-
ber lossis thelabeledtraining loss after training, and
the A-distance is approximated as described in the
previous subsection.Error refers to tagging error for
the full tagset on the target domain.

Representation Huber loss A-distance Error
Identity 0.003 1.796 0.253

Random Proj 0.254 0.223 0.561
SCL 0.07 0.211 0.216

Figure 2:(a) 2D plot of random projection representation and(b) results summary on large data

Figure 2(a) shows one hundred random instances projected onto the best two discriminating pro-
jections for WSJ vs. MEDLINE from a random matrix of 200 projections. This also seems to be
difficult to separate. The random projections don’t reveal any useful structure for learning, either,
though. Not shown is the corresponding noun vs. verb plot forrandom projections. It looks identical
to 2(a). Thus theorem 2 predicts that using two random projections as a representation will perform
poorly, since it minimizes only theA-distance and not the empirical error.

Figure 2(b) gives results on a large training and test set showing how the value of the bound can
affect results. The identity representation achieves verylow Huber loss (corresponding to empirical
error). The original feature set consists of 3 million binary-valued features, though, and it is quite
easy to separate the two domains using these features. The approximateA-distance is near the
maximum possible value.

The random projections method achieves lowA-distance but high Huber loss, and the classifier
which uses this representation achieves error rates much lower than the a classifier which uses the
identity representation. Finally, the structural correspondence learning representation achieves low
Huber loss and lowA-distance, and the error rate is the lowest of the three representations.

6 Discussion and Future Work

Our theory demonstrates an important tradeoff inherent in designing good representations for do-
main adaptation. A good representation enables achieving low error rate on the source domain while
also minimizing theA-distance between the induced marginal distributions of the two domains. The
previous section demonstrates empirically that the heuristic choices of the SCL algorithm [6] do
achieve low values for each of these terms.

Our theory is closely related to theory by Sugiyama and Mueller on covariate shift in regression
models [12]. Like this work, they consider the case where theprediction functions are identical,
but the input data (covariates) have different distributions. Unlike their work, though, we bound the
target domain error using a finite source domain labeled sample and finite source and target domain
unlabeled samples.

Our experiments illustrate the utility of our bound on target domain error, but they do not explore
the accuracy of our approximateH-distance. This is an important area of exploration for future
work. Finally our theory points toward an interesting new direction for domain adapation. Rather
than heuristically choosing a representation, as previousresearch has done [6], we can try to learn
a representation which directly minimizes a combination ofthe terms in theorem 2. If we learn
mappings from some parametric family (linear projections,for example), we can give a bound on
the error in terms of the complexity of this family. This may do better than the current heuristics,
and we are also investigating theory and algorithms for this.



7 Conclusions

We presented an analysis of representations for domain adaptation. It is reasonable to think that a
good representation is the key to effective domain adaptation, and our theory backs up that intuition.
Theorem 2 gives an upper bound on the generalization of a classifier trained on asourcedomain and
applied in atargetdomain. The bound depends on the representation and explicitly demonstrates the
tradeoff between low empirical source domain error and a small difference between distributions.

Under the assumption that the labeling functionf̃ is close to our hypothesis classH, we can compute
the bound from finite samples. The relevant distributional divergence term can be written as theA-
distance of Kiferet al [9]. Computing theA-distance is equivalent to finding the minimum-error
classifier. For hyperplane classifiers inR

d, this is an NP-hard problem, but we give experimental
evidence that minimizing a convex upper bound on the error, as in normal classification, can give a
reasonable approximation to theA-distance.

Our experiments indicate that the heuristic structural correspondence learning method [6] does in
fact simultaneously achieve lowA-distance as well as a low margin-based loss. This provides a
justification for the heuristic choices of SCL “pivots”. Finally we note that our theory points to
an interesting new algorithm for domain adaptation. Instead of making heuristic choices, we are
investigating algorithms which directly minimize a combination of theA-distance and the empirical
training margin.
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